Avaliação do Desempenho de Redes Neurais Pulsantes na Detecção de Anomalias

Jeferson Marques de Souza (IC), Hugo Vinícius Leão e Silva (PQ)

PIBIC

Câmpus Anápolis * e-mail do pesquisador

Palavras-Chave: Redes Neurais, Neuromórfico, Detecção de Anomalias.

Introdução

Detecção de anomalias diz respeito a encontrar dados que não estão em conformidade com a normalidade. A detecção de anomalias tem aplicações em diversos domínios, dado que é de interesse do analista descobrir os padrões inesperados (CHANDOLA; BANERJEE; KUMAR, 2009).

Redes neurais artificiais (ANN) podem ser usadas como modelos para reconhecimento e detecção de anomalias. Por outro lado, existem as redes neurais pulsantes (SNN) que se comportam de maneira muito próxima de uma rede biológica. As SNN processam a informação através da emissão de pulsos ao longo do tempo, podendo representar e integrar padrões complexos nativamente como tempo e frequência (TAHERKHANI et al., 2020). No entanto, o desenvolvimento das SNN ficou restrito ao campo da computação neuromórfica devido ao seu alto custo em hardware convencional (GHOSH-DASTIDAR; ADELI, 2009). Nesse contexto, uma das áreas em que as SNN se destacam é na detecção de anomalias, dada seu rápido aprendizado e capacidade de adaptação ao inesperado (STRATTON; WABNITZ; HAMILTON, 2020).

De forma a estudar e comparar a efetividade de cada rede faz-se um estudo comparativo entre o estado da arte de detecção de anomalias em redes neurais, a DeviationNetwork, com sua versão SNN (PANG; SHEN, 2019).

Metodologia

Foram usados três conjuntos de dados que estavam presentes no trabalho da Deviation Network: Thyroid, Fraud e Donors. Executou-se os mesmos experimentos feitos com a Deviation Network trocando as redes a serem avaliadas. Além disso foi avaliada a arquitetura de AutoEncoder, um modelo que também é aplicado na tarefa de detecção de anomalias.

Resultados e Discussão

Aqui as SNN consistentemente desempenham melhor que as ANN em todos os contextos em que foram aplicadas. Dessa forma, produziram as médias produzidas e dispostas na Tabela 1.

Na Tabela 1 é possível observar que as SNN conseguem uma margem de efetividade considerável sobre as ANN, justificando sua maior capacidade de aprendizado sob mesmas condições.

Tabela 1. Resultados dos experimentos realizados

Modelos	AUC-ROC	AUC-PR
ANN AutoEncoder	0,7716	0,0989
snnTorch AutoEncoder	0,8107	0,2371
ANN DevNet	0,9452	0,7468
snnTorch DevNet	0,9683	0,7979

Porém deve-se ressaltar que o tempo de execução das SNN é maior que o das ANN, fazendo com que seja necessário hardware dedicado para extrair o potencial das redes em sua totalidade.

Conclusões

As SNN de fato representam um avanço em relação às ANN, mas custam muitos recursos computacionais sendo implementadas de forma convencional. O ganho de desempenho pode justificar o maior custo a depender do domínio em que podem ser utilizadas.

Agradecimentos

Agradeço muito ao meu orientador por comprar o desafio de desbravar esse assunto tão novo e complexo que são as SNN. Agradeço ao IFG por proporcionar a oportunidade de propor esse projeto.

CHANDOLA, Varun; BANERJEE, Arindam; KUMAR, Vipin. Anomaly detection: A survey. **ACM computing surveys (CSUR)**, v. 41, n. 3, p. 1-58, 2009.

GHOSH-DASTIDAR, Samanwoy; ADELI, Hojjat. Spiking neural networks. **International journal of neural systems**, v. 19, n. 04, p. 295-308, 2009

STRATTON, Peter; WABNITZ, Andrew; HAMILTON, Tara Julia. A Spiking Neural Network Based Auto-encoder for Anomaly Detection in Streaming Data. In: **2020 IEEE Symposium Series on Computational Intelligence (SSCI)**. IEEE, 2020. p. 1981-1988.

PANG, Guansong et al. Deep learning for anomaly detection: A review. **ACM Computing Surveys (CSUR)**, v. 54, n. 2, p. 1-38, 2021.

TAHERKHANI, Aboozar et al. A review of learning in biologically plausible spiking neural networks. **Neural Networks**, v. 122, p. 253-272, 2020.