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Abstract
Machine learning models can be employed to antecipate environmental problems and even oversee 
systems and processes. The Bayesian multivariate probabilistic model (BMP) is able to predict the con-
centration of Dissolved Oxygen (DO) in water. With the use of free software which, based on historical 
data from water analysis, we are able to achieve results similar to those produced by artificial neural 
networks. In this study, we applied a BMP model developed in Python using the PyMC3 library to two dif-
ferent nonlinear environmental data sets. In the first one, a multivariate calibration of DO was performed 
in raw water from the Piracicaba River (São Paulo - Brazil), and the BMP model obtained a Root Mean 
Square Error of prediction (RMSEp) of 0.835 mg L-1 for 20 samples tested. In the second set, the same 
modeling process was used to obtain an RMSEp of 0.839 mg L-1 for 20 samples tested. Both results 
comparable to those obtained with a back propagation neural network. Another non-linear environmen-
tal data set was tested with excellent results. A BMP model for the concentration of benzene in air, as 
used for monitoring air pollution, obtained a RMSEp of 0.584 µg m-3.

Keywords: air pollution modeling. Bayesian modeling. dissolved oxygen. PyMC. Python. water quality 
modeling

Resumo
Modelos de aprendizado de máquina podem ser usados para prever problemas ambientais e até mes-
mo gerenciar sistemas e processos. O modelo probabilístico multivariado bayesiano (BMP) permite a 
construção de um modelo de previsão da concentração de Oxigênio Dissolvido (OD) na água. Com a 
utilização de softwares gratuitos que, a partir de dados históricos de análises de água, fornecem de 
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forma rápida e robusta, resultados semelhantes aos produzidos por redes neurais artificiais. Neste 
trabalho, um modelo BMP desenvolvido em Python utilizando a biblioteca PyMC3 foi aplicado a dois 
conjuntos de dados ambientais não lineares diferentes. No primeiro, a calibração multivariada do OD 
foi realizada em água bruta do Rio Piracicaba (São Paulo - Brasil), onde o modelo BMP obteve um Erro 
Quadrático Medio de previsão (RMSEp) de 0,835 mg L-1 para 20 amostras testadas. No segundo con-
junto, o mesmo processo de modelagem foi realizado para o Rio Paraíba do Sul (São Paulo - Brasil), 
obtendo um RMSEp de 0,839 mg L-1 para 20 amostras testadas. Ambos os resultados foram equivalen-
tes aos obtidos com uma rede neural de retropropagação. Outros dados ambientais não lineares foram 
testados com resultados muito bons. Um modelo BMP para concentração de benzeno no ar urbano, 
como monitoramento da poluição atmosférica, obteve um RMSEp de 0,584 µg m-3.

Palavras-chave: Modelagem de poluição atmosférica. Modelagem bayesiana. Oxigênio dissolvido. 
PyMC. Python. Modelagem de qualidade da água

Resumen
Los modelos de aprendizaje automático se pueden utilizar para predecir problemas ambientales e 
incluso gestionar sistemas y procesos. El modelo probabilístico multivariado bayesiano (BMP) permite 
la construcción de un modelo de predicción de la concentración de Oxígeno Disuelto (OD) en agua. 
Utilizando software libre que, basándose en datos históricos de análisis de agua, proporciona de forma 
rápida y robusta resultados similares a los producidos por redes neuronales artificiales. En este traba-
jo, se aplicó un modelo BMP desarrollado en Python utilizando la biblioteca PyMC a dos conjuntos de 
datos ambientales no lineales diferentes. En el primero, se realizó la calibración multivariada de OD en 
agua cruda del río Piracicaba (São Paulo - Brasil), donde el modelo BMP obtuvo un error cuadrático 
medio de predicción (RMSEp) de 0,835 mg L-1 para 20 muestras analizadas. En el segundo conjunto, 
se realizó el mismo proceso de modelado para el río Paraíba do Sul (São Paulo - Brasil), obteniendo 
un RMSEp de 0,839 mg L-1 para 20 muestras probadas. Ambos resultados fueron equivalentes a los 
obtenidos con una red neuronal de retro propagación. Se probaron otros datos ambientales no lineales 
con muy buenos resultados. Un modelo BMP para la concentración de benceno en el aire urbano, como 
monitoreo de la contaminación del aire, obtuvo un RMSEp de 0,584 µg m-3.

Palabras clave: Modelado de la contaminación del aire. Modelado bayesiano. Oxígeno disuelto. PyMC. 
Python. Modelado de la calidad del agua

Introduction

It is essential that water resources have adequate physical, chemical and micro-
biological conditions for use. Water must contain essential substances essential to life 
and be free from other substances that may have detrimental effects on organisms in 
the food chains. Therefore, it must be available in sufficient quantity and quality to meet 
the needs of the biota (Baird e Cann, 2011). Aiming to improve water quality conditions, 
the monitoring data require and allow ways to monitor the variation of water quality in-
dicators. The modeling of these data can help establish hypotheses about the structure 
or behavior of a physical system and can explain the properties of the system and pre-
dict reactions to stimulus (Emamgholizadeh et al., 2014; Wooley; Lin, 2005). It is also 
important to build models to predict DO as a function of changes in other physical and 
chemical parameters. The modeling outcomes can facilitate a deeper understanding 
of the mechanisms that underlie diverse behaviors, thereby providing a foundation for 
decision-making in water quality control and hydrological system (Von Sperling, 2014; 
Qian et al., 2005; Graf, 2018).
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Bayesian statistics are conceptually very simple: there are some data that are fi-
xed, in the sense that what is measured cannot be changed, and there are parameters 
whose values are of interest and, therefore, their possible values can be explored. All 
the uncertainties are modeled using probabilities. In other statistical paradigms, there 
are different types of unknown quantities; in the Bayesian structure, everything that is 
unknown is treated in the same way. If a quantity is not known, a probability distribution 
can be assigned to it. Then, Bayes’ theorem is used to transform the previous probability 
distribution p(0) (what is known about a given problem before looking at the data), into 
a posterior distribution p(0|D) (what is known after observing D data). In other words, 
Bayesian statistics is a form of learning (Martin, 2016). Transcending the logical reaso-
ning that ponders the prior knowledge about the problem, this knowledge base draws its 
conclusions, where the full scope of the problem is not previously known. Thus, probabi-
listic reasoning is necessary, and it can act in the face of uncertainty, assigning levels of 
reliability. A powerful tool in this reasoning is Bayesian inferences. The lack of information 
in the probability is the same as dealing with uncertainties, not just boolean values, type 
of primitive data that has true (1) and false (0), in Bayesian thinking, this view is updated 
after analyzing the evidence, even if contrary to what is believed a priori - prior or pre-
vious probability, and given the updated evidence, the posterior probability. The Bayesian 
worldview defines probability as the measure of credibility in an event - that is, how con-
fident we are that a given event will occur (Davidson-Pilon, 2016).

Consequently, when casting a fair coin, the probability of obtaining the head is 
50%, but assuming in a play, one of the opponents has spied the coin at the moment 
after the launch, so the certainty of the result is likely 100% for the head face. But know-
ledge of the outcome does not change the results of the coin. So, different probabilities 
to the outcome are assigned. Furthermore, if after 100 throws the result was 20 times 
for the head and 80 times for the crown, the probability, in the opponents’ belief, will 
remain the same, in other words, 50% chance for each one. This only happens in the 
frequentist view of probability, which is given by the limit of the relative frequency of the 
occurrence of an event, within one of a sample space with “n” independent repetitions 
of the experiment, with this “n” tending to infinity. So, the so-called frequentists, attribute 
to the most classic version of statistics, an unconditional probability, assuming that the 
probability is the frequency of long-term events. Bayesians, on the other hand, define 
probability as the measure of belief, or confidence that an event occurs, that is, a condi-
tional probability. So, a frequentist inference of a function returns a number, a value that 
represents an estimate, summarized as if it was the sample mean, while the Bayesian 
function returns probabilities (Martin, 2016; Davidson-Pilon, 2016). Then, in a previous 
belief, in the face of new evidence, a new belief, known as Bayes Theorem, defined by 
Thomas Bayes, moves on to the following equation:

Where: 
P(θ│γ): Posterior distribution of θ given the event γ;
P(θ): The priori (previous) distribution of the event θ;
P(γ│θ): Probability of event γ given the event θ (likelihood function);
P(γ): Probability of event γ.

Interested in the proposition θ and knowing the event γ, the posterior P(θ│γ) is 
calculated. Inference is used to obtain it through computational processes (Davidson-
Pilon, 2016).

P(θ│γ)= (P(γ│θ)P(θ) P(γ)  
(1)
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Material and methods

Input and output data

The water quality data from the Piracicaba River (sampling point PCAB 02800) and 
the Paraíba do Sul River (PARB 02300), were provided by the Companhia Ambiental 
do Estado de São Paulo (Cetesb, 2023). The parameters: water temperature, turbi-
dity, conductivity, total phosphorus concentration, ammoniacal nitrogen concentra-
tion, Kjeldahl nitrogen concentration, nitrate concentration, nitrite concentration, total 
dissolved solids concentration, biochemical oxygen demand (BOD), concentration of 
dissolved oxygen (DO), pH, and river flow were analyzed. The latter is available from 
Agência Nacional de Águas (Ana, 2023). All parameters from the samples analyzed 
were collected between 1990 and were used as historical data for building the models 
developed in this work. For the Piracicaba River, 148 data sets were provided, without 
any type of sample selection or removal of outliers for use in the models. For the cal-
culations model, the physico-chemical parameters and river flow were arranged in a 
matrix X[148, 10], in which each row corresponds to the analyses made on a given day. 
The columns refer to the studied parameters, except for the DO concentration values, 
which were used exclusively as an output parameter, associated with a vector y[148, 
1]. For the Paraíba do Sul River, 155 data sets were provided and the data was arran-
ged in X[155, 11] and the output vector y[155, 1].

Another non-linear environmental data was tested (supplementary material): air 
analysis with electronic nose of benzene (De Vito et al., 2008; De Vito et al., 2009), 
with a total of 9358 data sets, with 15 attributes containing missing values. All data 
containing missing values has been removed as well as the date and time attributes. 
The total samples were arranged in a matrix X [876, 12] with the variables from the gas 
sensors responses: true CO concentration, and PT08.S1 sensor response, true Non 
Metanic Hydrocarbons concentration, PT08.S2 sensor response, true NOx concen-
tration, PT08.S3 sensor response, True NO2 concentration, PT08.S4 sensor respon-
se, PT08.S5 sensor response, Temperature, Relative Humidity and Absolute Humidity. 
The output vector y [876, 1] is the true benzene concentration. 

Mathematical modelling

This work was developed using the PyMC library (Salvatier; Wiecki; Fonnesbeck, 
2016) which is programmed in the Python language through the Anaconda distribution 
(Anaconda, 2023). It allows the use of Bayesian inferences tools; for statistical treat-
ment of water quality data. It could also use cloud resources. The Bayesian probabilis-
tic model (BPM) is based on the construction of a mathematical relationship between 
independent variables γi and the other dependent variables θi, using specific Gaussian 
probability distribution functions (Normal) to characterize the priori distribution of each 
variable θi in the model. Bayesian data analysis is based on the inference of unknown 
parameters for observed data models, returning to Equation 1, where now:

θ: Unknown variable of the model to be estimated (DO);
γ: Matrix of observed data X (physical-chemical parameters and river flow);
P(θ│γ): Posterior distribution of DO (θ) given the data X (event γ);
P(γ│θ): Likelihood function, which models the probability of observing the data γ 
given the parameters in the probabilistic model for the DO concentration.



Tecnia V.9 N.2 | 2024 
Bayesian Probabilistic Modeling applied to some environmental data using PyMC

 

5

P(θ): Prior distribution of model parameters.
P(γ): Probability distribution of data X, built from historical (temporal) data.

The adjustment parameters for BPM model are: the prior distributions parame-
ters α, β and σ are gaussian using Normal (µ, 2), with µ from DO mean historical 
data and standard deviation σ as Uniform (0, 1); the sampling used are NUTS default 
method, with tune = 2000 and random seed. The comparison between the results of 
the BPM model and the artificial neural network was made using a back propagation 
neural network (traingda algorithm) present in Matlab, version R2016a. The training 
of the neural network considered all the adjustment parameters on the default con-
dition. The validation/prediction sets for all models (for rivers) were built with 20 sam-
ples chosen using the original Kennard & Stone (Kennard-Stone […], 2022) algorithm. 
The models generated and optimized by the PyCaret library (Documentação, 2023) 
were also used in comparison with our BPM model using default conditions. One of 
the key features of PyCaret is its capability to automatically select and tune machine 
learning models for all kinds of data. All full models developed with their adjustment 
parameters and the original data can be accessed at https://github.com/Schimidt99/
Bayesian-probabilistic-model.

Results and discussion

A relationship between the dependent variable y (i.e., DO), in relation to the other 
independent input variables X can be established by using the Bayesian multivariate 
linear model through the probability density functions (PDF):

yi ~ Normal(µi, σ)      (likelihood function) 

The linear relationship between yi and Xi,j is:

µi = α + βj Xi,j 

Where:
α ~ Normal(4, 10) : the prior function α;
βi ~ Normal(0, 10) : the prior functions β;
σ ~ Uniform(0, 1) : the prior function σ;
i : index for the number of samples;
j : index relative to the number of variables (X columns).

The fit values of the PDF functions are estimated and based on experimental 
data. The fit values are in parentheses. The variable yi uses a gaussian probability 
distribution, based on experimental information, that defines the plausibility of the in-
dividual observations of river DO over the sample period studied. Other probabilistic 
distributions were also tested in this work, such as log-normal, but the OD prediction 
results were worse. The parameters α, βj and σ are defined by priori distributions with 
Gaussian form as Normal(µ,σ), using mean µ and standard deviation σ. Gaussian 
distribution appears in many processes in nature. Measurement errors, variations in 
growth and the velocities of molecules tend to Gaussian distributions. These processes 
do this because, in the end, these processes add finite fluctuations to a distribution 

(2)

(3)
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of sums that aggregate information about the underlying process (Salvatier; Wiecki; 
Fonnesbeck, 2016; Mc Elreath, 2015; Lyon, 2014).

The values of µ and σ in the distributions are optimized for each parameter α, βj 
and σ. This model can predict yi results through the posterior distribution, as obser-
vations normally distributed through an expected value μi, which is a linear function of 
predictive variables Xj, plus an observation error σ with uniform distribution (experi-
mentally optimized).

At the PyMC library, the Bayesian model (Salvatier; Wiecki; Fonnesbeck, 2016) 
loads all the user-defined Xij predictor (input) variables by associating them with a 
parameter βj. It establishes a product between each vector (set) of Xj values and their 
respective coefficient βj, being added to the coefficient α (or adjustment parameter) 
and establishing a mathematical relationship with the output yi (or expected result) 
through the variable μi:

μi = α + β0 Xi1 + β1 Xi2 + β2 Xi3 +...+ βi Xij + ε

The model considers μ to be deterministic random variable, which implies that 
its value is completely determined by the values of its ‘parents’. In other words, there is 
no uncertainty beyond what is inherent in the parents values. Here (eq. 4), μ is just the 
sum of the intercept α and the products of the coefficients βj representing the physi-
co-chemical parameters from the analysis of the river water (Table 1) by the predictive 
variables Xj, whatever their values are, plus the random error ε presents behavior 
compatible with Normal(0,s2).

Piracicaba river Paraiba do Sul river
β0: BOD β0: BOD

β1: Water temperature β1: Water temperature

β2: River flow β2: River flow

β3: Water pH β3: Water pH

β4 : Total phosphorus concentration β4 : Ammonia nitrogen concentration

β5: Nitrate NO3
- concentration β5: Total phosphorus concentration

β6: Nitrite NO2
- concentration β6: Condutivity

β7: Ammonia nitrogen concentration β7: Nitrate NO3
- concentration

β8: Kjeldahl nitrogen concentration β8: Total dissolved solids conc.

β9: Turbidity β9: Nitrite NO2
- concentration

β10: Turbidity

Table 1 - The βj coefficients of the Bayesian model related to predictor variables for rivers models 
Fonte: Authors own elaboration.

The coefficients values generated by the Markov Chain Monte Carlo (MCMC) al-
gorithm, based on calibration data, are depicted graphically in Figure 1, which was ge-
nerated by the PyMC library.On the left side of this figure, histograms with the randomly 
generated values obeying the characteristic reference values of mean of the chosen 
distributions, are presented. On the right side, the values generated (in sequential or-
der) by Monte Carlo simulation are shown.

(4)
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Figure 1. Gaussian FDP functions used in linear models parameters (left) randomly generated by Monte Carlo 
simulations, using values on the right (Piracicaba river – top, Paraiba do Sul river - bottom) 

Fonte: Authors own elaboration.

Graphically, the model also determines the meaning of the coefficients accor-
ding to the Gaussian distributions as shown in Figure 2 (graphics generated by PyMC 
library, for better data visualization and understanding of the model). Tables 2 and 
3 show the values generated in Figure 2, for Piracicaba and Paraiba do Sul rivers 
respectively, including the means, standard deviations, standard error of the Monte 
Carlo simulation, the lower and upper limits of 95% confidence interval, all referring to 
Gaussian functions by forestplot PyMC function (Figure 2).

Figure 2. Mean values with error bars for to the coefficients used in the linear DO prediction model generated in Python 
by PyMC library (Piracicaba River – left, Paraiba do Sul River - right)  

Fonte: Authors own elaboration.
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Mean Std. Dev. MC Error Lower Lim. Upper Lim.

α 4.150 0.125 0.002 3.928 4.395

β0 -0.355 0.133 0.002 -0.604 -0.112

β1 -0.673 0.150 0.002 -0.945 -0.388

β2 0.647 0,171 0,003 0,322 0,967

β3 -0.116 0,135 0,003 -0,379 0,130

β4 -0.383 0,196 0,003 -0,767 -0,026

β5 0.010 0,129 0,002 -0,229 0,251

β6 0.019 0,121 0.001 -0.193 0.261

β7 0.018 0.134 0.002 -0.239 0.267

β8 -0.268 0.187 0.003 -0.596 -0.101

β9 0.343 0.141 0.002 0.071 0.600

σ 1.401 0.093 0.001 1.239 1.590

Table 2 - Numerical values of the Bayesian model coefficients for Piracicaba river (Fig. 2 left) 
Fonte: Authors own elaboration.

Mean St. Dev. MC Error Lower Lim. Upper Lim.

α 4.708 0.089 0.001 4.542 4.874

β0 -0.013 0.103 0.001 -0.213 0.170

β1 -0.382 0.106 0.001 -0.577 -0.175

β2 0.242 0.095 0.001 0.058 0.420

β3 0.188 0.096 0.001 0.016 0.373

β4 -0.692 0.127 0.002 -0.931 0.453

β5 0.143 0.109 0.002 -0.065 0.350

β6 -0.214 0.104 0.001 -0.405 -0.202

β7 0.090 0.091 0.001 -0.075 0.268

β8 -0.239 0.093 0.001 -0.408 -0.060

β9 0.026 0.105 0.001 -0.157 0.234

β10 -0.169 0.113 0.002 -0.157 0.234

σ 1.028 0.066 0.001 0.910 1.156

Table 3 - Numerical values of the Bayesian model coefficients for Paraiba do Sul river (Fig. 2 right) 
Fonte: Authors own elaboration.

Figure 2 allows assessing the importance of the contribution of each predictor 
variable Xj in the model as a function of its associated βj coefficient. The further away 
from the vertical line of zero, the greater the contribution with positive or negative 
values   of the predictive variables Xj. For example, to the Piracicaba River, the variables 
X5 (NO2

-), X6 (NO3
-) and X7 (ammoniacal nitrogen) have a small contribution to the mo-

del output, i.e. DO, in relation to the variables X0 (BOD), X1 (water temperature) and 
X2 (river flow), which have higher average values. These variables X5, X6 and X7 could 
even be removed from the model without significantly affecting the results. There is a 
similar behavior for the βj coefficients for the Paraiba do Sul River. Figure 2 allows an 
individual assessment of each variable Xj and its importance for the model. This is a 
unique feature of the PyMC library.
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Finally, the Bayesian model calculates the sample distribution of the Y results, in 
the data set, using a likelihood normal distribution function and mean parameter µ and 
standard deviation σ (eq. 2). Then, it estimates the posterior probability for the unkno-
wn DO variables in the model (generically, it calculates the distribution of probabilities 
of the coefficients, which are used to predict via the regression model, the unknown Y 
values for new values of the regressors Xj). Optimization methods based on samples 
taken from the posterior distribution using Markov Chain Monte Carlo (MCMC) sam-
pling are used - NUTS default method (modification of the Hamiltonian Monte Carlo) at 
PyMC library (Salvatier; Wiecki; Fonnesbeck, 2016).

In this work, 128 samples were used to calibrate the Piracicaba River, and 20 
samples to predict DO values and obtained a RMSEp of 0.835 mg L-1 and a coefficient 
R2 = 0.6736, when comparing the real values against those calculated, as shown in 
Figure 3. For the Paraiba do Sul River, 135 samples were used to calibrate the model 
and 20 samples to predict DO values and it obtained a RMSEp of 0.839 mg L-1 and a 
coefficient R2 = 0.7677, when comparing the real values against those calculated, as 
shown in Figure 4. Silva e Schimidt (2016) obtained results very similar to this one, 
including the same dispersion of Figure 4, but using an artificial neural network back 
propagation model, for the same data. The dispersion observed in Figures 3 and 4 sho-
ws that a large majority of the calculated values are very close to the line and, within 
the expectation, they should have a low prediction error. There are also several values 
far from it contributing to the increase of the RMS error that could have been discarded 
in the construction of the model, but all original samples were used. 

Figure 3. 
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Fonte: Authors own elaboration.

To compare the efficiency and robustness of Bayesian probabilistic models, some 
statistical parameters were compared (Table 4). The RMS calibration and prediction 
errors, in addition to the R2 coefficient (Rcal and Rpred) between the predicted values 
by the models against the real values (Figures 3 and 4) and the application of a back 
propagation neural network to compare the same parameters. The architecture of the 
neural networks were built for the Piracicaba River was 10-5-1, and for the Paraiba 
do Sul River was 11-6-1. The number of neurons in the hidden layer is the meaning 
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of the neurons in the sum of input and output layers (Heaton, 2011). The box plot 
of residuals from the BPM models are described at https://github.com/Schimidt99/
Bayesian-probabilistic-model.

BPM  model ANN  model PyCaret  library
Piracicaba 

River
Paraiba do Sul 

River
Piracicaba 

River
Paraiba do 

Sul River
Piracicaba 

River
Paraiba do 

Sul River

RMSEc
(mg L-1) 1.330 0.972 1.403 1.222 1.327 0.844

RMSEp
(mg L-1) 0.835 0.839 0.855 1.05 1.326 0.984

Rcal 0.7067 0.7686 0.6825 0.6538 0.4524 0.6194

Rpred 0.6736 0.7677 0.6305 0.7017 0.4521 0.5140

Table 4 -  Comparative statistical results between the models 
Fonte: Authors own elaboration.

Results show that the RMS errors and the R coefficients for the Bayesian model 
and for the neural network are similar (Table 4). Considering that every neural net-
work has several initialization parameters, and all must be adjusted, mainly to avoid  
problems of underfitting and overfitting, the Bayesian model can be built and adjusted 
in a much simpler and faster way, in relation to an artificial neural network. The models 
chosen by the PyCaret library, using the same proportion of samples for training/pre-
diction, presented bad results for the statistical parameters evaluated in both ‘modern’ 
optimized models, mainly the R coefficient. The best models optimized were Random 
Forest Regressor, for data from the Piracicaba River, and Extra Tree Regressor, for 
data from the Paraiba do Sul River.

Figure 4. 
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The prediction errors obtained by the Bayesian probabilistic model are equivalent 
to other works done with artificial neural networks. Khani e Rajaee (2017) studied the 
DO concentration in a river, testing several mathematical models, including some neu-
ral networks with peculiar algorithms and obtaining RMS prediction errors of 0.744 mg 
L-1 and 0.803 mg L-1. Chen e Liu (2014) studied the water quality of reservoirs in Taiwan 
through DO concentration. They obtained RMS prediction errors from 0.52 to 0.98 mg 
L-1 among the different neural networks’ algorithms. Antanasijević et al. (2013) studied 
different algorithms of neural networks to predict DO concentration in the Danube River 
in Serbia. They obtained RMS prediction errors from 0.59 to 0.83 mg L-1 among the 
tested algorithms. Khan e Valeo (2017) did two regression models, a Bayesian linear 
and a fuzzy linear, which were constructed for different scenarios. They used an auto-
regressive model to uncertainty quantification in DO prediction at Bow River in Calgary, 
Canada, using only DO historic data. They obtained Mean Squared Errors from 0.55 to 
36.5 mg L-1 among the two tested models.

Another non-linear environmental data was tested: a BPM model for concentra-
tion of benzene in air, measured by electronic nose sensors, as monitoring air pollution 
(De Vito, 2008), it was also constructed with very good results, RMSEp of 0.584 μg m-3 

and R coefficient of 0.9961. The 826 samples were used to calibrate the model and 
50 samples for prediction/testing, which are detailed in the Supplementary Material. 
All full Bayesian models developed in Python can be accessed at https://github.com/
Schimidt99/Bayesian-probabilistic-model.

In both models for the two rivers studied, there is a great mathematical contribu-
tion of the input variables BOD, water temperature and river flow, in the relationship 
with DO. According to Ross and Stock (2019) and Emamgholizadeh et al. (2014), the 
variables BOD and water temperature are important environmental parameters that 
affect the direct measurement of DO in a river. The influence of water temperature on 
the dissolution of gases is also well known (Ross; Stock, 2019; Manaham, 2013). Other 
variables used in the models showed different importance for each of the rivers, pro-
bably due to the specific characteristics of each river, geographic location and the soil 
characteristics (chemical composition).

Conclusion

The Python programming language in conjunction with its mathematical packa-
ges provides powerful tools for data modeling. One of the significant advantages of 
Bayesian regression is its ability to provide uncertainty estimates along with pre-
dictions, for example, by previously choosing values for the standard deviation σ 
(eq. 2). Traditional regression models, including neural networks, often output a point 
estimate without any indication of the confidence or uncertainty associated with the 
prediction. Bayesian models, on the other hand, provide a probability distribution over 
possible parameter values, allowing for a more nuanced understanding of uncer-
tainty. Bayesian models can be easily adapted to different problem settings by choo-
sing appropriate prior distributions. This makes them flexible and suitable for a wide 
range of applications. Finally, Bayesian models naturally incorporate regularization 
through the choice of prior distributions. This regularization helps prevent problems 
with overfitting situations.

Mathematical statistical models associated with Bayesian inferences can be 
applied to the water quality analysis of a river, allowing to relate time series information 
from analyzed variables with the water quality. The PyMC library is easier and simpler 
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to use than other equivalent languages such as WinBUGS, JAGS and Stan. This library 
allows a simple and fast visualization of the results through its own graphs, tables and 
the export of the same in TXT or CSV files. Based on the results above, we can say 
that the Bayesian probabilistic model allows us to analyze how each input variable 
Xj relates to (affects) the output Y (Figure 2). This is not possible in other multivariate 
models, except for the Principal Component Analysis (PCA) where the detailed study 
of the loadings can allow these observations. The use of these Bayesian probabilistic 
models in water quality studies could allow the visualization of extreme changes due 
to severe climate processes or anthropogenic activities (simulating different probabi-
lity distributions of variables) and consequently changes in prediction of the results. 
Although the models used in this paper all have variables with gaussian distribution, 
the probabilistic programming of the PyMC library allows other distributions to be used, 
not being limited only to gaussian processes. Knowledge of the behavior of the varia-
bles helps in this step. It is possible to study the temporal variation of the variable to 
be analyzed. A histogram of the distribution (range of values) of the variable Xj as a 
function of the frequency count of the values must be constructed. The distribution of 
the values will make it possible to identify the most appropriate PDF, although other 
processes to do this can be used. The physico-chemical parameters of the existing 
Brazilian environmental legislation by Conama, and any other control agencies in the 
world, could be followed in real time, as well as projections through predictions of 
anomalous situations. The models would allow predictions about the concentration of 
dissolved oxygen (based on other physico-chemical parameters analyzed in the water) 
and even projections of strategies to minimize the cost of water quality treatment and 
to mitigate situations of resource degradation, contamination and preservation.
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