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Resumo
O problema de aproximar um difeomorfismo (resp. fluxo) Ck preservador de volume (k ≥ 1) em uma 
variedade compacta com ou sem fronteira por um difeomorfismo (resp. fluxo) foi originalmente mo-
tivado por considerações na teoria dos sistemas dinâmicos e proposto pela primeira vez por Palis e 
Pugh. Esse problema, apesar de sua aparente simplicidade para aqueles menos familiarizados com o 
assunto, esconde uma complexidade técnica e dificuldade extremamente sutis. O trabalho de Zehnder 
sobre técnicas de aproximação simplética oferece uma abordagem convincente para reexaminar os 
resultados fundamentais nessa área, conforme estabelecido por Palis e Pugh. Ao revisitar suas con-
tribuições seminais por meio da perspectiva simplética de Zehnder, novas perspectivas podem surgir, 
avançando o estado da arte. Nesse contexto, revisaremos os resultados clássicos sobre aproximação 
e uma aproximação simplética, seguindo as ideias de Zehnder.

Palavras-chave: geometria simplética; aproximações de funções; sistemas dinâmicos.

Abstract
The problem of approximating a volume-preserving Ck diffeomorphism (resp. flow) (k ≥ 1) on a com-
pact manifold with or without boundary by a diffeomorphism (resp. flow) was originally motivated by 
considerations in dynamical systems theory and first posed by Palis and Pugh. This problem, despite 
its apparent simplicity for those less familiar with the subject , hides an extremely nuanced technical 
complexity and difficulty. Zehnder’s work on symplectic approximation techniques provides a com-
pelling avenue to re-examine the foundational results in this area as established by Palis and Pugh. 
Revisiting their seminal contributions through the lens of Zehnder’s symplectic framework could yield 
novel insights and advance the state-of-the-art. With this in mind, we will revisit the classical results on 
approximation and a symplectic approximation following Zehnder’s ideas.

Keywords: symplectic geometry; function approximations; dynamical systems.

Resumen
El problema de aproximar un difeomorfismo (resp. flujo) Ck preservador de volumen (k ≥ 1) en una 
variedad compacta con o sin frontera mediante un difeomorfismo (resp. flujo) fue originalmente mo-
tivado por consideraciones en la teoría de sistemas dinámicos y planteado por primera vez por Palis 
y Pugh. Ese problema, a pesar de su aparente simplicidad para aquellos menos familiarizados con la 
materia, en realidad oculta una complejidad técnica y dificultad extremadamente sutil. El trabajo de 
Zehnder sobre técnicas de aproximación simpléctica ofrece una vía convincente para reexaminar los 
resultados fundamentales en esa área, tal como fueron establecidos por Palis y Pugh. Revisitar sus 
contribuciones seminales a través del marco simpléctico de Zehnder podría generar nuevas perspecti-
vas y avanzar en el estado del arte. Con eso en mente, reexaminaremos los resultados clásicos sobre 
aproximación y una aproximación simpléctica siguiendo las ideas de Zehnder.

Palabras clave: geometría simpléctica; aproximaciones de funciones; sistemas dinámicos.
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Introduction

Functions such as sen(x), ex, log(x) belong to a class of functions called analytic 
functions, which means that around each point in their domain, there exists a power 
series representation of the form:

Writing  , we see that each  is a polyno-
mial and =  for all x in the interval of convergence  of the series. It can 
also ben shown that within each compact interval of convergence, converges unifor-
mly to  .

A generalization of the above result was proved by K. Weierstrass in 1885. 
According to Weierstrass, any continuous function  can be uniformly 
approximated on its domain [a, b] by a sequence of polynomials. Specifically, given a 
continuous  on [a, b] and  > 0, there exists a polynomial p such that  
for all . Note that we are approximating  by infinitely differentiable func-
tions, since polynomials are . For a proof of Weierstrass’ theorem, we recommend 
(Ransford, 1984).

In a more general context, we may ask whether a given continuous function 
: , where U is an open set, can be approximated by smooth functions. 
This is indeed possible, as the following example demonstrates. Define  by

where  is the is chosen 

It is straightforward to verify that the functions ηε are smooth and satisfy 
,

supp . Defining , by a change of variables we 
can

write . For reasons that will 1r be clear, fε is smooth and
 f uniformly on compact subsets of U .

In this paper, we focus on avolume-preserving approximations, which the abo-
ve method does not always achieve. We will explore this issue through the lens of 
Symplectic Geometry.

We define (M, σ) a symplectic manifold where M is a smooth manifold and σ is a 
closed and non-degenerate 2-form. A diffeomorphism ϕ: (M1, σ1) → (M2, σ2).

A relationship between symplectic manifolds is described as follows: if ϕ∗σ2 = σ1 
in which ϕ∗ denotes the pullback in differential geometry. For example, given (p, q) = 
(p1, . . . , pn, q1, . . . , qn) ∈ 
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We can consider the 2-form

and with this form,  is a symplectic manifold. Despite being a very sim-
ple example, it is always what occurs, in local coordinates, in any symplectic mani-
fold. This is a classical result of symplectic geometry demonstrated by Darboux. We 
will give a proof of this fact following the ideas of (Moser, 1965) and (Zehnder, 1977).

An elementary reason for choosing symplectic geometry to try to solve the pro-
blem of approximating functions while preserving volume is that the symplectic dif- 
feomorphisms preserve symplectic volumes and, therefore it suffices to smooth out 
these diffeomorphisms. More precisely, if ϕ : (M1, σ1) → (M2, σ2) is a diffeomorphism 
between symplectic manifolds such that ϕ∗σ2 = σ1 then (σ1)n and (σ2)n are volume forms 
on M1 and M2, respectively, and

for all Borel sets A ⊂ M1.
This work is organized as follows. In section 2 we will discuss classical methods 

for function approximations. In section 3 we will revisit Zehnder’s result following the 
original ideas (Zehnder, 1977). Finally, in section 4 we will see recent results about the 
problem of approximating a volume-preserving diffeomorphism.

Standard smoothness

Smoothness of functions is closely related to their density in specific functional 
spaces. For example, smooth functions are dense in the L2 and L1 spaces. This means 
that for any function whitin these spaces it is possible to approximate arbitrarily clo-
sely by smooth functions. One common approach to achieve this approximation is by 
convolving the function with a sequence of smooth functions with special properties. 
The resulting convolutions are smooth functions that converge to the original function 
in both the L2 and L1 norm. This result will be proved in detail in this section following 
the original ideas (Abraham; Marsden; Ratiu, 2012), which is already considered a 
classical result.

Theorem 2.1 (See Abraham; Marsden; Ratiu, 2012)). Let M be a compact manifold. 
The subset  is dense in .

As established by (Abraham; Marsden; Ratiu, 2012), Theorem 2.1 demonstrates 
that smooth functions are dense in the space of p-integrable functions on a compact 
manifold M. This classical result forms the foundation for our study of structure-pre-
serving function approximation using tools from symplectic geometry.

Unfortunately, method, does not guarantee that the approximating function pre-
serves volume. However, all is not lost. In Section 3 we will explore how we can ad-
dress this problem by using generating function techniques from the perspective of 
symplectic geometry.

Symplectic geometry offers a natural framework fo address this issue. As pio-
neered by Moser in his seminal work (Moser, 1965), the key idea is that symplectic 
diffeomorphisms preserve symplectic volumes. Therefore, if we can approximate 
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our function using a symplectic isotopy, the volume will be preserved throughout 
the approximation.

In Section 3, we will examine Moser’s path method for creating symplectic iso-
topies. By smoothly deforming a given function through a family of generating func-
tions, we can achieve smooth approximations that precisely preserve the geometric 
structures encoded by the symplectic form. This approach elegantly avoids the issues 
that can occur when naively using mollification or convolution methods.

I believe that exploring these symplectic techniques will yield new insights into 
structure- preserving function approximation problems. It is exciting to continue ad-
vancing this area, which lies at the intersection of analysis, geometry and physics. I 
look forward to presenting our findings in Section 3 and potentially encouraging fur-
ther progress on this topic.

Symplectic smoothing

In this section, we will improve the main result obtained in the previous section. 
In addition to approximating functions with infinitely differentiable functions, we will 
also ensure that the volume is preserved . With this objective, our primary result will 
be presented in the following theorem.

Theorem 3.1 – (See (ZEHNDER, 1977)). Let (M, σ) and (N, τ ) be symplectic manifolds. 
The set of smooth symplectic diffeomorphisms of class C∞ from M to N is dense in the 
space of symplectic diffeomorphisms of class Ck from M to N, for k ≥ 1.

To present the text in an interesting and clear order, we will first demonstrate 
the following lemma:

Lemma 3.2 – Let W ⊂  be open. Consider the set Dk+1(W ) := {S ∈ Ck+1(W): then 
  

 where K1 ⊂ W and K2 contained in the domain of E(S) are com-

pact sets.

To prove this lemma, we will need to state and prove the next two propositions 
in sequence. 

Proposition 3.3 – Let U, V ⊂ 2n be open sets and K1 ⊂ U and K2 ⊂ V compact sets. 
Denote by Dif k(U,V) the set of class Ck diffeomorphisms from U to V . For k ≥ 1, if f, g 
∈ Difk(U, V ) and || f − g||Ck(K1) then ||f−1 − g−1||Ck(K2).

Proof. We will prove this by induction on k. Assume that f, g : K1 → K2 are still diffeo-
morphisms. Begin with k = 1. Given  > 0, suppose that ||f − g–1||C1(K1) , i.e.
|f (x) − g(x)|  and |Df (x) − Dg(x)|  for all x ∈ K1. Since f |K1 is uniformly conti-
nuous, given x, y ∈ K1 with |x − y|  , we can assume that 
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An analogous idea applies to the functions Df and Dg. Since f is a diffeomorphism, 
given an arbitrary w ∈ K2 there exists a1 ∈ K1 such that f (a1) = w. By the above, f (a1) 
∈ g(B(a1 ; ) ∩ K1) ⊂ B(w; ∈). Thus, there exists a2 ∈ B(a1; ) ∩ K1 such that g(a2) = w. 
It follows that

Since w is arbitrary, |f −1(w) − g−1(w)| < ∈ for all w ∈ K2.
Noting that f −1 ◦ f = id and g−1 ◦ g = id, we have Df −1(f (x)) = [Df (x)]−1 and Dg−1(g(x)) 

= [Dg(x)]−1 for all x ∈ K1. Since the inversion of matrices with non-zero determinant is 
continuous, and |Df (x)−Dg(y)|  , we can assume [Df (x)] − [Dg(y)]–1 < ϵ for all x, y 
∈ K1. On the other hand, for each w ∈ K2 there exist a1, a2 ∈ K1 with w = f(a1) = g(a2) 
and since [Df (a1)]−1 − [Dg(a2)]−1 < ϵ. Therefore, we have proven that ∥f −1 − g−1∥C1(K2 ) < ϵ.

Now, assume that the proposition holds true for k > 1. Given ϵ > 0, suppose tha-
t∥f − g∥ ck+1(k1) . Note that, for any point x ∈ K , Df (x) and Dg(x) are Ck diffeomor-
phisms. Since ∥Df (x) − Dg(x)∥Ck  , for all x ∈ K1, by the induction hypothesis, we 
can assume that ∥[Df (x)]−1 − [Dg(x)]−1∥Ck < ϵ. Since Df −1(f (x)) = [Df (x)]−1 and Dg−1(g(x)) 
= [Dg(x)]−1 for every x ∈ K1, we have ∥Df −1(f (x)) − Dg−1(g(x))∥Ck < ϵ. In particular, since 
f and g are diffeomorphisms, ∥Df −1(y) − Dg−1(y)∥Ck < ϵ, for all y ∈ K2. As we have seen 
in previous cases, we can assume that |f −1(y) − g−1(y)| < ϵ for all y ∈ K2. Thus, ∥f −1 − 
g−1∥Ck+1(K2 ) < ϵ.

Proposition 3.4 – Let U, V, W ⊂  be open sets. Then, for k ≥ 1,

a. Let Φ : V → W be a Ck function, K1 ⊂ U and K2 ⊂ U and k2 be compact sets, 
and h1, h2 ∈ Ck(U, V ). Given ϵ > 0, there exists δ > 0 such that if ∥h1 − h2∥Ck (K1) 

< δ, then ∥Φ ◦ h1 − Φ ◦ h2∥Ck (K1) < ϵ. 

b. Let Ψ : U → V be a Ck function, K ⊂ U be a compact set, and f1, f2 ∈ Ck(V, W ). 
Given ϵ > 0, there exists δ > 0 such that if ∥f1 − f2∥Ck (Ψ(K)) < δ, then ∥f1 ◦ Ψ − f2 
◦ Ψ∥Ck (K) < ϵ.

c. Let f1, f2 ∈ Ck(U, V ) and g1, g2 ∈ Ck(V, W ). Given ϵ > 0, there exists δ > 0 such 
that if ∥f1 − f2∥Ck (K1) < δ and ∥g1 − g2∥Ck (K2) < δ, then ∥g1 ◦ f1 − g2 ◦ f2∥Ck (K1) < ϵ, 
where K1 ⊂ U and K2 ⊂ V are compact sets.

Proof. We will individually present the demonstration for each item.

a. Given ϵ > 0, suppose that ∥h1− h2∥ck(k1)  

 and  is uniformly continuous, we 

can assume that |Φ ◦ h1(x) −Φ ◦ h2(x)| < ϵ for all x ∈ K1. Moreover, for 

all x ∈ K1 and j = 1, . . . k,|Dj (Φ ◦ (h1(x) − h2(x))) | ≤ |DjΦ(h1(x) − h2(x))| 
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Therefore, ∥Φ ◦ h1 − Φ ◦ h2∥Ck (K1) < ϵ.

b. Note that

 for all x ∈ K and j = 1, . . . k. We will verify the two possible cases. 
Case 1. ∥Ψ∥Ck (K) ≤ 1. In this case, suppose that ∥f1 − f2∥Ck (Ψ(K)) < ϵ. In parti-
cular, |f1(Ψ(x)) − f2(Ψ(x))| < ϵ for all x ∈ K. Moreover, by (1), |Dj(f1(Ψ(x)) − 
f2(Ψ(x)))| < ϵ, for all x ∈ K and j = 1, . . . k. Therefore, ∥f1 ◦ Ψ − f2 ◦ Ψ∥Ck (K) < ϵ. 
Case 2. ∥Ψ∥Ck (K) > 1. For this case, suppose that ∥f1 − f2∥Ck (Ψ(K)) < 

. This implies that |f1 (Ψ(x)) − f2 (Ψ(x))| <  for all x ∈ K. . 
By (1), |Dj(f1(Ψ(x)) − f2(Ψ(x)))| < ϵ, for all x ∈ K and j = 1, . . . k. 
Since  < ϵ, |f1 (Ψ(x)) − f2 (Ψ(x))| < ϵ for all x ∈ K. Therefore ∥f1 ◦ Ψ − f2 ◦ 
Ψ∥Ck (K) < ϵ.

c. Let K1 ⊂ U and K2 ⊂ V be compact sets and ϵ > 0. By item (a), there exists 
δ1 > 0, such that if ∥f1 − f2∥Ck (K1) < δ1 then ∥g2 ◦ f1 − g2 ◦ f2∥Ck (K1) < . 
By item (b), there exists δ2 > 0, such that if ∥g1 − g2∥Ck (�2) < δ2 then ∥g1 
◦ f1 − g2 ◦ f1∥Ck (K1) < . Therefore, given ϵ > 0, take δ = max{δ1, δ2}, 
and if ∥f1 − f2∥Ck (K1) < δ and ∥g1 − g2∥Ck (K2) < δ it implies that 
∥g1 ◦ f1 − g2 ◦ f2∥Ck (K1) ≤ ∥g1 ◦ f1 − g2 ◦ f1∥Ck (K1) + ∥g2 ◦ f1 − g2 ◦ f2∥Ck (K1) 

In light of these results, we can easily proceed with the proof of the lemma that 
was left pending at the beginning of this section.

Proof of Lemma 3.2 – Let S1, S2 ∈ Dk+1(W) and K ⊂ W be compact. Given ϵ > 0, choo-
se δ > 0 such that ∥S1 − S2∥Ck+1(K) < δ. Take U as the codomain of the mapping σ1 : 
W → U defined by

We know that both the mapping σ1 and σ2 : W → V defined by σ2(x, η) =  

are diffeomorphisms (see (Abraham; Marsden; Ratiu, 2012)). Similarly, for the ma-

ppings τ1 : W → U and τ2 : W → V defined by

Clearly, since S1 and S2 are Ck-close, ∥σ1 − τ1∥Ck (K) < δ and ∥σ2 − τ2∥Ck (K) < δ. 
Hence, by Proposition 3.3, the functions  and  are Ck-close. Let F1 := E(S1) and 
F2 := E(S2). By (Abraham; Marsden; Ratiu, 2012), we can rewrite these functions as:
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Therefore, by item (c) of Proposition 3.4, ∥F1 − F2∥Ck
 (K1) < ϵ, where K1 ⊂ U is compact.

Note tha we can smooth out a symplectic diffeomorphism F = E(S) through a 
standard smoothing of its generating function S. Indeed, let F = E(S) be a Ck-symplectic 
diffeomorphism, k ≥ 1, from U ⊂ Rn to V ⊂ , where U is simply connected and Ū 
is compact, which is given by the generating function S ∈ Ck+1(W ) (See (Abraham; 
Marsden; Ratiu, 2012). We can write F = σ2 ◦ σ1

−1 where σ1 : W → U and σ2 : W → V 
are diffeomorphisms. We will choose open subsets W2, W3 ⊂ W such that 3, 2 are 
compact and 3 ⊂ 2 and 2 ⊂ W (we abbreviate this as W3 ⋐ W2 ⋐ W). To approxi-
mate S on W3 by a C∞ function, begin by choosing functions ζ ∈ C∞(W2) with ζ ≡ 1 on 
W 3 and γ ∈ C∞(W ) with γ ≡ 1 on W 2. Given ϵ > 0, there exists a function Xϵ ∈ C∞(W) 
such that

∥γ · [(ζ · S) − Xϵ ∗ (ζ · S)]∥Ck+1(W ) < ϵ.

Define S1 ∈ Ck+1(W ) by

S1 = S − γ · [(ζ · S) − Xϵ ∗ (ζ · S)].

It follows that ∥S − S1∥Ck+1(W ) < ϵ. Furthermore, S1 = S on W \ W 2, since ζ ≡ 0 outside 
W2, and S1 = Xϵ ∗ S on W3, since γ ≡ ζ ≡ 1 on W3. Therefore S1|W3 ∈ C∞. Now, for ϵ 
sufficiently small we choose U3 ⋐ U2 ⋐ U such that U3 ⊂ σ1(W3) and σ1(W2) ⊂ U2. Define

F1 := E(S1).

We can write F1 = τ ◦ τ −1, where τ (x, η) =  and τ (x, η) =  is suf-

ficiently small. In this case, the following properties hold: 

(P1) F1|U ∈ C∞(U3), since τ1 and τ2 are C∞ on W3.

(P2) As we can see in (Abraham; Marsden; Ratiu, 2012), F1 is a symplectic diffeo-
morphism from U to F (U ).

(P3) F1 = F in U \ U 2, since S = S1 in W \ W 2, which implies σ1 = τ1 and σ2 = τ2

in W \ W 2.

(P4) F1 is of class Cp, k ≤ p ≤ ∞, in the open sets where F is of class Cp, because 
in these open sets the function S1 defined above will be of class Cp+1, and since 
F1 = E(S1), F1 will be of class Cp.

(P5) By Lemma 3.2, ∥F1 − F ∥Ck (U ) < δ(ϵ), where δ(ϵ) → 0 as ϵ → 0.

Now, we can proceed with the approximation while preserving the volume as 
announced at the beginning of the section.

Proof of Theorem 3.1 – Let f ∈ Ck(M, N ) be a symplectic diffeomorphism from M to 
N and Wf be a sufficiently small open neighborhood of f in the Ck topology. Choose a 
locally finite covering of M, consisting of symplectic charts (Ui, ϕi), 1 ≤ i ≤ ∞, with the 
following properties:
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b.  is compact;

b. h(Ui) ⊂ Vi for all h ∈ Ck(M, N ) ∩ Wf , with (Vi, φi), 1 ≤ i ≤ ∞ being an atlas in 
N.

Additionally, take a covering (U (3)), 1 ≤ i ≤ ∞, of M , such that Ui
(3) ⋐ Ui

(2) ⋐ Ui and 
in Ui every symplectomorphism in the neighborhood Wf is given by the local genera-
ting function of f as in (Abraham; Marsden; Ratiu, 2012), where the local construction 
is previously taken with respect to ϕi(U (3)) ⋐ ϕi(U (2)) ⋐ ϕi(Ui). Now, we will define a 
sequence of functions (fn) such that f0 = f and 

Based on properties of our cover, the local map F1 := φ1◦f ◦ϕ−1 ∈ Ck(ϕ1(U1), φ1(V1))
is a symplectomorphism from ϕ1(U1) to its image, which is given by F1 := E(S1), where S1 
is the local generating function of F1. As we saw earlier, there exists a map G1 such that 

• G1 = F1 outside of ϕ1(‘U (2));
• G1| ϕ1(U (3)) is of class C∞;
• G1 is Cp in the open sets where F1 is Cp;
• G1 is a symplectomorphism;
• There exists δ1 > 0 such that ∥G1 − F1∥Ck (ϕ1(U1)) < δ1. 

Let f0 = f . Define the function f1 as follows:

Note that f1|U1
(3)

 is C∞ and is of class Cp in the open sets where f0 is Cp. Moreover, 
if δ1 is chosen sufficiently small, then f1 ∈ Ck(M, N ) ∩ Wf and is a symplectomorphism.

Assume that, for n ≥ 2, fn−1 ∈ Ck(M, N )∩Wf is defined and satisfies the following:

a. fn−1 is a symplectomorphism;
b. fn−1|U(3)1 ∪···∪U(3)n−1is C∞;
c. fn−1 is Cp in the open sets where fn−2 is Cp.

Therefore, for the symplectomorphism Fn := φn ◦ fn−1 ◦ ϕ−1 ∈ Ck(ϕn(Un), φn(Vn)), 
there exists a function Gn such that

• Gn = Fn outside of ϕn(U (2)
n);

• Gn|ϕ (U(3)) is of class C∞;
• Gn is Cp in the open sets where Fn is Cp;
• Gn is a symplectomorphism;
• There exists δn > 0 such that ∥Gn − Fn∥Ck (ϕn(Un)) < δn.

Thus, define

If δn is chosen sufficiently small, then fn is a symplectomorphism from M to N, 
which belongs to the neighborhood Wf of f , and 

Finally, define . This limit is not difficult to compute since n→∞ 
the cover (U (3)) is locally finite. With the appropriate choice of (δn), we conclude that g ∈ 
C∞(M, N) ∩ Wf is a symplectomorphism from M to N and satisfies the desired properties.
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Approximations C1 and other results

The question of approximating a volume-preserving Ck (k ≥ 1) diffeomorphism (or 
flow) on a compact manifold with or without boundary via a diffeomorphism (or flow) 
stems from dynamical systems theory and was proposed by Palis and Pugh (cf. (Palis; 
Pugh, 1975). This issue, notwithstanding its facial simplicity for those less acquainted 
with the material, conceals an intricacy and finely-honed technical challenge.

So far, answers to this problem are partial, and the main question, when k = 1, 
remains open. Interest in studying this issue has solidified recently with the develo-
pment of techniques in dynamical systems that generically apply to C1 diffeomor-
phisms, and with the development of techniques in ergodic theory that apply to C2 
diffeomorphisms. A positive answer to such a question would lead us to interesting 
connections between dynamical systems and ergodic theory (see Arbieto-Matheus; 
Arbieto; Matheus, 2007), for an example of such connections). More recently, in (Avila; 
Crovisier; Wilkinson, 2021), the authors established a C1 version of the stable ergo-
dicity conjec- ture for partially hyperbolic volume-preserving diffeomorphisms. Their 
principal findings surmounted the limitations of the Pugh-Shub approach by introdu-
cing novel perturbation implements within the C1 topology. These tools encompass 
the linearization of horseshoes and the generation of “superblenders” from hyperbolic 
sets exhibiting high entropy. It was proven that stable ergodicity is generic among no-
nuniformly Anosov diffeomorphisms. Furthermore, open questions and connections 
to other dynamical properties were discussed.

Therefore, in this section, we will present some partial results involving approxi-
mations of volume-preserving functions. Earlier, we discussed how Zehnder proved the 
case of symplectic diffeomorphisms on boundaryless surfaces. It is natural to inquire 
about potential extensions of such results. Let us now explore some of these extensions:

C1, α Approximations

We will denote by Ck,α, k ≤ 0 and 0 < α < 1, the usual Hölder space and iff ∈ Ck,α 
we define ∥f ∥ 

For C1,α diffeomorphisms preserving volume we have a satisfactory answer given 
by Zehnder, namely

Theorem 4.1 – (Zehnder, 1977)). Let M be a compact C∞ manifold of dimension d with 
a volume form µ. Let f ∈ C1,α(M ) be a volume-preserving diffeomorphism, 0 < α ≤ 1. 
Then f can be approximated by a C∞ volume-preserving diffeomorphism in the follo-
wing sense. There exists a sequence (fn) of C∞ diffeomorphisms with f ∗µ = µ, such that

with the constant k > 0 depending on ∥f ∥α, but independent of n.It is worth 
emphasizing that the proof of the above result uses Hodge Theory and completely 
differs from the symplectic case.
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C1 Flows

Let M be an m-dimensional surface, m ≥ 2, without boundary. We say that a 
vector field X is conservative if div X = 0 and we denote by X ∈ Xm(M ). An equivalent 
condition for a C1 map f to preserve volume is that | det Df | ≡ 1. A proof of this fact 
can be seen in (Viana; Oliveira, 2019).

Now, suppose that ft is the flow associated to the C1 vector field X. Liouville’s for-
mula expresses the Jacobian of ft in terms of the divergence div X of the vector field X :

We easily see that, by (4), if X is a conservative field then its flow preserves volume.
The result below proved by Zuppa, (Zuppa, 1979), (see also Arbieto-Matheus, 

(Arbieto; Matheus, 2007)), shows that C1 flows can be approximated (in the sense of 
the C1 topology) by C∞ flows.

Theorem 4.2 (Zuppa, 1979)). X∞(M ) is C1-dense in X1 (M).

Approximations in Regions with Boundary

Regarding the issue of approximating diffeomorphisms in regions with boun-
daries of , we will see a stronger result of Moser’s Theorem made by Dacorogna 
and Moser.

Consider Ω ⊂ Rn an open, connected and bounded set and two volume forms τ, β

τ = f (x)dx1 ∧ . . . dxn, β = g(x)dx1 ∧ . . . dxn,

with f, g > 0.
We can show, under certain regularity conditions on Ω, f, g, that there exists a 

diffeomorphism φ : Ω → Ω keeping the boundary condition fixed and such that

φ∗β = λτ

where  
The result above is equivalent to

Theorem 4.3 – (Dacorogna; Moser, 1990)). Let k ≥ 0 be an integer and 0 < α < 1. Let 
Ω ⊂ be an open, bounded, connected set and with boundary ∂Ω of class Ck+3,α. Let 
f, g ∈ Ck,α( ), f, g > 0 in . Then there exists a diffeomorphism φ with φ, φ−1 ∈ Ck+1,α(

; ) satisfying 

For the proof of this theorem, see (DACOROGNA; MOSER, 1990).
It is interesting to note that the solution uses classical theory of Elliptic Partial 

Differential Equations, reducing the problem to finding a field that satisfies a problem 
of the type 

where h is a suitably chosen Cα function.
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A natural attempt to solve such a problem is to try to find a solution of the 
type divY = ∇u, which transforms equation (6) into the equation involving the 
Laplacian operator

With traditional methods (Schauder estimates), the existence and regularity of solu-
tions to equation (7) is proven. When trying to treat the case α = 0 with these methods, 
we encounter equation (6) with the function h only continuous. In this case, we encou-
nter the following negative result due to McMullen:

Theorem 4.4 (Mcmullen, 1998)). For any n > 1 there exists a function f ∈ L∞( ) which 
is not the divergence of any Lipschitz vector field.

See the proof of this theorem in (Mcmullen, 1998). Based on this theorem, 
Bourgain and Brezis in (Bourgain; Brezis, 2002) obtained very interesting negative 
results in the study of equation 6, when h is only a continuous function.

Final considerations

This article aimed to provide a review of the main results surrounding the con-
jecture proposed in 1975 by Palis and Pugh (see Palis; Pugh, 1975)), including the 
detailed proof by Zehnder (see (Zehnder, 1977)). A section was dedicated to re-
porting the partial results since then, leading up to the recent 2021 result by Avila 
et al. (see Avila; Crovisier; Wilkinson, 2021), where they established a C1 version of 
the stable ergodicity conjecture for partially hyperbolic volume-preserving diffeo-
morphisms. The authors’ principal findings have overcome the limitations of the 
Pugh-Shub approach by introducing innovative perturbation techniques within the 
C1 topology. These tools encompass the linearization of horseshoes and the gene-
ration of “superblenders” from hyperbolic sets exhibiting high entropy. It has been 
proven that stable ergodicity is a prevalent property among non-uniformly Anosov 
diffeomorphisms. Furthermore, the article discussed open questions and explored 
connections to other dynamical properties.
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