Fake news: a brief tertiary review through health, deep learning, and emerging perspectives
DOI:
https://doi.org/10.56762/tecnia.v10i2.1672Palavras-chave:
Notícias falsas, Revisão terciária, Saúde, Aprendizado ProfundoResumo
Contexto: A proliferação de notícias falsas representa uma ameaça social significativa, especialmente em informações de saúde, problema agravado pela pandemia de Covid-19. Técnicas de Aprendizado Profundo (DL) são centrais nos esforços de detecção, com foco crescente em desinformação relacionada à saúde. Objetivo: Este artigo estende o trabalho anterior dos autores, sintetizando estudos secundários (ES) sobre detecção de notícias falsas, focando nos papéis do DL, no domínio da saúde e tendências recentes (2022-2023). Método: Foi realizada uma revisão terciária rápida analisando 15 ES publicados entre 2013 e agosto de 2023, categorizados por ênfase: aplicações de DL, desinformação em saúde ou publicação recente. Resultados: Identificou-se dependência consistente em DL e Processamento de Linguagem Natural para classificação de texto e detecção de mídia fabricada. Estudos em saúde ou tendências recentes abordaram desafios usando conjuntos de dados específicos. Principais desafios incluem câmaras de eco, aplicações interdomínio, necessidade de detecção precoce e ameaças de modelos generativos. Demandas por transparência, mecanismos de bloqueio e Inteligência Artificial Explicável foram destacadas. Conclusão: Esta revisão fornece uma visão sintetizada da pesquisa em detecção de notícias falsas, enfa- tizando interseções com DL e contextos de saúde, confirmando a prevalência de técnicas centrais apesar de metodologias diversas, e apontando desafios que requerem atenção urgente.
Referências
ABOUT Us. Gossip Cop, [s. l.], c2019. Available from: https://web.archive.org/web/20190807002653/https://www.gossipcop.com/about/. Access from: 24 aug. 2025.AHMAD, T.; ALIAGA LAZARTE, E. A.; MIRJALILI, S. A Systematic Literature Review on Fake News in the Covid-19 Pandemic: Can AI Propose a Solution? Applied Sciences, [s. l.], v. 12, n. 24, 2022. ISSN 2076-3417. DOI: 10.3390/app122412727. Available from: https://www.mdpi.com/2076-3417/12/24/12727. Access from: may 22, 2025.
AIMEUR, E.; AMRI, S.; BRASSARD, G. Fake news, disinformation and misinformation in social media: a review. Social Network Analysis and Mining, [s. l.], v. 13, n. 1, p. 30, 2023. DOI: 10.1007/s13278-023-01028-5. Available from: https://pubmed.ncbi.nlm.nih.gov/36789378/. Access from: may 22, 2025.
ALI, I.; AUYB, M. N.; SHIVAKUMARA, P.; NOOR, N. F. B. M. Fake News Detection Techniques on Social Media: A Survey. Wireless Communications and Mobile Computing, [S.l.], v. 2022, 2022. https://doi.org/10.1155/2022/6072084. Available from: https://onlinelibrary.wiley.com/doi/10.1155/2022/6072084. Access from: may 22, 2025.
CARTAXO, B.; PINTO, G.; SOARES, S. Rapid Reviews in Software Engineering. In: FELDERER, M.; TRAVASSOS, G. H. (ed.). Contemporary Empirical Methods in Software Engineering. Cham: Springer International Publishing, 2020, p. 357–384. ISBN 978-3-030-32489-6. DOI: 10.1007/978-3-030-32489-6_13. Available from: https://content.e-bookshelf.de/media/reading/L-13432442-5babef3091.pdf. Access from: may 22, 2025.
CUI, L.; LEE, D. CoAID: COVID-19 Healthcare Misinformation Dataset, 2020. arXiv: 2006.00885 [cs.SI].
DAI, E.; SUN, Y.; WANG, S. Ginger Cannot Cure Cancer: Battling Fake Health News with a Comprehensive Data Repository. Proceedings of the International AAAI Conference on Web and Social Media, [s. l.], v. 14, n. 1, p. 853–862, may 2020. DOI: 10.1609/icwsm.v14i1.7350. Available from: https://ojs.aaai.org/index.php/ICWSM/article/view/7350. Access from: may 22, 2025.
DHALL, S.; DWIVEDI. A. D.; PAL, S. k; SRIVASTAVA, G. Blockchain-based Framework for Reducing Fake or Vicious News Spread on Social Media/Messaging Platforms. ACM Trans. Asian Low-Resour. Lang. Inf. Process, New York, NY, USA, v. 21, n. 1, Nov. 2021. ISSN 2375-4699. DOI: 10.1145/3467019. Available from: https://doi.org/10.1145/3467019. Access from: may 22, 2025.
DIXON, S. J. Most popular social networks worldwide as of January 2024, ranked by number of monthly active users. Statista, [s. l.], 2024. Available from: https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/. Access from: may 22, 2025.
GARG, D.; KHAN, S.; ALAM, M. Integrative use of IoT and deep learning for agricultural applications. In: SINGH, P. K.; SHARMA, S.; SHARMA, R.; SHARMA, S.; SHARMA, A. (ed.). Proceedings of ICETIT 2019. Cham: Springer International Publishing, 2020, p. 521–531. ISBN 978-3-030-30577-2. DOI: 10.1007/978-3-030-30577-2_46. Available from: https://link.springer.com/chapter/10.1007/978-3-030-30577-2_46. Access from: 24 aug. 2025.
HANGLOO, S.; ARORA, B. Combating multimodal fake news on social media: methods, datasets, and future perspective. Multimedia systems, Springer, [s. l.], v. 28, n. 6, p. 2391–2422, 2022. DOI: https://doi.org/10.1007/s00530-022-00966-y. Available from: https://dl.acm.org/doi/10.1007/s00530-022-00966-y. Access from: may 22, 2025.
HEALTH NEWS REVIEW, [s. l.], 2022. Available from: https://web.archive.org/web/20220707131651/https://www.healthnewsreview.org/. Access from: 24 aug. 2025.
ISLAM, M. R.; LIU, S.; WANG, X.; XU, G. Deep learning for misinformation detection on online social networks: a survey and new perspectives. Social Network Analysis and Mining, [s. l.], v. 10, dec. 2020. DOI: 10.1007/s13278-020-00696-x. Available from: https://www.researchgate.net/publication/344437686_Deep_learning_for_misinformation_detection_on_online_social_networks_a_survey_and_new_perspectives. Access from: may 22, 2025.
KIM, B.; XIONG, A.; LEE, D.; HAN, K. A systematic review on fake news research through the lens of news creation and consumption: Research efforts, challenges, and future directions. PLOS ONE, Public Library of Science, [s. l.], v. 16, n. 12, p. 1–28, Dec. 2021. DOI: 10.1371/journal.pone.0260080. Available from: https://doi.org/10.1371/journal.pone.0260080. Access from: may 22, 2025.
KONDAMUDI, M. R.; SAHOO, S. R.; CHOUHAN, R.; YADAV, N. A comprehensive survey of fake news in social networks: Attributes, features, and detection approaches. Journal of King Saud University - Computer and Information Sciences, [s. l.], v. 35, n. 6, p. 101571, 2023. ISSN 1319-1578. DOI: https://doi.org/10.1016/j.jksuci.2023.101571. Available from: https://www.sciencedirect.com/science/article/pii/S1319157823001258. Access from: may 22, 2025.
LIGTHART, A.; CATAL, C.; TEKINERDOGAN, B. Systematic Reviews in Sentiment Analysis: A Tertiary Study. Artif. Intell. Rev., Kluwer Academic Publishers, USA, v. 54, n. 7, p. 4997–5053, Oct. 2021. ISSN 0269-2821. DOI: 10.1007/s10462-021-09973-3. Available from: https://doi.org/10.1007/s10462-021-09973-3. Access from: may 22, 2025.
LTD, L. Litmaps: Your Literature Review Assistant. [S.l.: s.n.], 2023. Available from: https://www.litmaps.com/. Access from: may 22, 2025.
MEEL, P.; VISHWAKARMA, D. K. Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities. Expert Systems with Applications, [s. l.], v. 153, p. 112986, 2020. ISSN 0957-4174. DOI: https://doi.org/10.1016/j.eswa.2019.112986. Available from: https://www.sciencedirect.com/science/article/pii/S0957417419307043. Access from: may 22, 2025.
MITRA, T.; GILBERT, E. Credbank: A Large-Scale Social Media Corpus With Associated Credibility Annotations. Proceedings of the International AAAI Conference on Web and Social Media, [s. l.], v. 9, n. 1, p. 258–267, 2015. DOI: 10.1609/icwsm.v9i1.14625. Available from: https://ojs.aaai.org/index.php/ICWSM/article/view/14625. Access from: may 22, 2025.
PETERSEN, K.; VAKKALANKA, S.; KUZNIARZ, L. Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology, [s. l.], v. 64, p. 1–18, 2015. ISSN 0950-5849. DOI: https://doi.org/10.1016/j.infsof.2015.03.007. Available from: https://www.sciencedirect.com/science/article/pii/S0950584915000646. Access from: may 22, 2025.
POLITIFACT. The Poynter Institute, [s. l], c2020. Available from: https://www.politifact.com/. Access from: 24 aug. 2025.
REIS, J. C. S; CORREIA, A.; MURAI, F.; VELOSO, A. Supervised Learning for Fake News Detection. IEEE Intelligent Systems, [s. l.], v. 34, n. 2, p. 76–81, 2019. DOI: 10.1109/MIS.2019.2899143. Available from: https://www.researchgate.net/publication/332952191_Supervised_Learning_for_Fake_News_Detection. Access from: may 22, 2025.
SCHLICHT, I. B.; FERNADEZ, E.; CHULVI, B.; ROSSO, P. Automatic detection of health misinformation: a systematic review. Journal of Ambient Intelligence and Humanized Computing, [s. l.], p. 1–13, 2023. Available from: https://link.springer.com/article/10.1007/s12652-023-04619-4. Access from: may 22, 2025.
SHAHI, G. K.; NANDINI, D. FakeCovid - A Multilingual Cross-domain Fact Check News Dataset for COVID-19. [S. l.]: ICWSM, June 2020. DOI: 10.36190/2020.14. Available from: https://doi.org/10.36190/2020.14. Access from: may 22, 2025.
SHARMA, K.; OIAN, F.; JIANG, H.; RUCHANSKAY, N.; LIU, Y. Combating Fake News: A Survey on Identification and Mitigation Techniques. ACM Trans. Intell. Syst. Technol. Association for Computing Machinery, New York, NY, USA, v. 10, n. 3, Apr. 2019. ISSN 2157-6904. DOI: 10.1145/3305260. Available from: https://doi.org/10.1145/3305260. Access from: may 22, 2025.
SHU, K.; MAHUDESWARAN, D.; WANG, S.; LEE, D.; LIU, H. FakeNewsNet: A Data Repository with News Content, Social Context and Dynamic Information for Studying Fake News on Social Media. PubMed Disclaimer, [s. l.], v. 8, n. 3, p.171-188, jun. 2020. DOI: 10.1089/big.2020.0062. Available from: https://pubmed.ncbi.nlm.nih.gov/32491943/. Access from: may 22, 2025.
SNOPES. [s. l.], [2025?]. Available from: https://www.snopes.com/. Access from: 24 aug. 2025.
TACCHINI, E.; BALLARIN, G.; DELLA VEDOVA, M. L.; MORET, S.; DE ALFARO, L. Some like it hoax: Automated fake news detection in social networks. arXiv preprint arXiv:1704.07506, [s. l.], 2017. DOI: 10.48550/arXiv.1704.07506. Available from: https://arxiv.org/abs/1704.07506. Access from: aug. 24, 2025.
THE CORONA Virus Facts/ Datos Corona Virus Alliance Database. Pointer.50, [s. l. ], 2025. Available from: https://www.poynter.org/ifcn-covid-19-misinformation/. Access from: 24 aug. 2025.
VARMA, R.; VERMA, Y.; VIJAYVARGIYA, P.; CHURI, P. A systematic survey on deep learning and machine learning approaches of fake news detection in the pre-and post-COVID-19 pandemic. International Journal of Intelligent Computing and Cybernetics, Emerald Publishing Limited, [s. l.], v. 14, n. 4, p. 617–646, 2021. Available from: https://www.researchgate.net/publication/355057574_A_systematic_survey_on_deep_learning_and_machine_learning_approaches_of_fake_news_detection_in_the_pre-_and_post-COVID-19_pandemic. Access from: aug. 24, 2025.
WANG, W. Y. “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Vancouver, Canada: Association for Computational Linguistics, July 2017, p. 422–426. DOI: 10.18653/v1/P17-2067. Available from: https://aclanthology.org/P17-2067. Access from: aug. 24, 2025.
WANG, Y.; McKEE, M.; TORBICA, A.; STUCKLER, D. Systematic Literature Review on the Spread of Health-related Misinformation on Social Media. Social Science & Medicine, [s. l.], v. 240, p. 112552, 2019. ISSN 0277-9536. DOI: https://doi.org/10.1016/j.socscimed.2019.112552. Available from: https: //www.sciencedirect.com/science/article/pii/S0277953619305465. Access from: aug. 24, 2025.
WU, Y.; NGAI, E. W. T.; WU, P.; WU, C. Fake news on the internet: a literature review, synthesis and directions for future research. Internet Research, [s. l.], v. 32, p. 1662–1699, 5 jan. 2022. ISSN 1066-2243. DOI: 10.1108/INTR-05-2021-0294. Available from: https://doi.org/10.1108/INTR-05-2021-0294. Access from: aug. 24, 2025.
ZHOU, X.; MULAY, A.; FERRARA, E.; ZAFARANI, R. Recovery: a Multimodal Repository for COVID-19 News Credibility Research. In: PROCEEDINGS of the 29th ACM International Conference on Information & Knowledge Management. Virtual Event, Ireland: Association for Computing Machinery, 2020 (CIKM ’20). New York, USA: Association for Computing Machinery, 2020, p. 3205–3212. ISBN 9781450368599. DOI: 10.1145/3340531.3412880. Available from: https://doi.org/10.1145/3340531.3412880. Access from: aug. 24, 2025.
Secondary Studies Included in this Work
S1 AHMAD, T.; ALIAGA LAZARTE, E. A.; MIRJALILI, S. A Systematic Literature Review on Fake News in the COVID-19 Pandemic: Can AI Propose a Solution? Applied Sciences, [s. l.], v. 12, n. 24, 2022. ISSN 2076-3417. DOI: 10.3390/app122412727. Available from: https://www.mdpi.com/2076-3417/12/24/12727. Access from: aug. 24, 2025.
S2 AIMEUR, E.; AMRI, S.; BRASSARD, G. Fake news, disinformation and misinformation in social media: a review. Social Network Analysis and Mining, [s. l.], v. 13, n. 1, p. 30, 2023. DOI: 10.1007/s13278-023-01028-5. Available from: https://pubmed.ncbi.nlm.nih.gov/36789378/. Access from: aug. 24, 2025.
S3 ALI, I.; AYUB, N. B.; SHIVAKUMARA, P.; NOOR, N. F. M. Fake News Detection Techniques on Social Media: A Survey. Wireless Communications and Mobile Computing, Hindawi, [s. l.], v. 2022, 2022. Access from: aug. 24, 2025. DOI: 10.1155/2022/6072084. Available from: https://www.onlinelibrary.wiley.com/doi/10.1155/2022/6072084. Access from: Aug. 24, 2025.
S4 BEER, D. de; MATTHEE, M. Approaches to Identify Fake News: A Systematic Literature Review. HOESEL, S. van; GÓMEZ, J. M.; ZHU, Q. (ed.). Information and communication technologies in education, research, and industrial applications. Cham: Springer, 2021, p. 13–22. ISBN 978-3-030-49263-2. DOI: 10.1007/978-3-030-49264-9_2. Available from: https://doi.org/10.1007/978-3-030-49264-9_2. Access from: Aug. 24, 2025.
S5 HU, L.; WEI, S.; ZHAO, Z.; WU, B. Deep learning for fake news detection: A comprehensive survey. AI Open, [s. l.], v. 3, p. 133–155, 2022. ISSN 2666-6510. DOI: https://doi.org/10.1016/j.aiopen.2022.09.001. Available from: https: //www.sciencedirect.com/science/article/pii/S2666651022000134. Access from: aug. 24, 2025.
S6 ISLAM, M. R.; LIU, S.; WANG, X.; XU, G. Deep learning for misinformation detection on online social networks: a survey and new perspectives. Social Network Analysis and Mining, [s. l.], v. 10, dec. 2020. DOI: 10.1007/s13278-020-00696-x. Available from: https://link.springer.com/article/10.1007/s13278-020-. Access from: aug. 24, 2025.
S7 KAPANTAI, E.; CHRISTOPOULOU, A.; BERBERIDIS, C.; PERISTERAS, V. A systematic literature review on disinformation: Toward a unified taxonomical framework. New Media & Society, [s. l.], v. 23, n. 5, p. 1301–1326, 2021. DOI: 10.1177/1461444820959296. eprint: https://doi.org/10.1177/1461444820959296. Available from: https://doi.org/10.1177/1461444820959296. Access from: aug. 24, 2025.
S8 KIM, B.; XIONG, A.; LEE, D.; HAN, K. A systematic review on fake news research through the lens of news creation and consumption: Research efforts, challenges, and future directions. PLOS ONE, Public Library of Science, [s. l.], v. 16, n. 12, p. 1–28, dec. 2021. DOI: 10.1371/journal.pone.0260080. Available from: https://doi.org/10.1371/journal.pone.0260080. Access from: aug. 24, 2025.
S9 KONDAMUDI, M. R.; SAHOO, S. R.; CHOUHAN, L.; YADAV, N. A comprehensive survey of fake news in social networks: Attributes, features, and detection approaches. Journal of King Saud University - Computer and Information Sciences, [s. l.], v. 35, n. 6, p. 101571, 2023. ISSN 1319-1578. DOI: https://doi.org/10.1016/j.jksuci.2023.101571. Available from: https: //www.sciencedirect.com/science/article/pii/S1319157823001258. Access from: aug. 24, 2025.
S10 LI, J.; LEI, M. A Brief Survey for Fake News Detection via Deep Learning Models. Procedia Computer Science, [s. l.], v. 214, p. 1339–1344, 2022. In: 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT. ISSN 1877-0509. DOI: https://doi.org/10.1016/j.procs.2022.11.314. Available from: https: //www.sciencedirect.com/science/article/pii/S1877050922020269. Access from: aug. 24, 2025.
S11 MEEL, P.; VISHWAKARMA, D. K. Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities. Expert Systems with Applications, [S. l.], v. 153, p. 112986, 2020. DOI: 10.1016/j.eswa.2020.112986. Available from: https://prohic.nl/wp-content/uploads/2020/11/2020-10-26-FakeNewsOverviewMeta.2020.pdf. Access from: 24 aug. 2025.
S12 SCHLICHT, I. B.; FERNANDEZ, E.; CHULVI, B.; ROSSO, P. Automatic detection of health misinformation: a systematic review. Journal of Ambient Intelligence and Humanized Computing, [S. l.], v. 15, n. 3, p. 2009–2021, 2024. DOI: 10.1007/s12652-023-04619-4. Available from: https://link.springer.com/article/10.1007/s12652-023-04619-4. Access from: 24 aug. 2025.
S13 VARMA, R.; VERMA, Y.; VIJAYVARGIYA, P.; CHURI, P. P. A systematic survey on deep learning and machine learning approaches of fake news detection in the pre-and post-COVID-19 pandemic. International Journal of Intelligent Computing and Cybernetics, [S. l.], v. 14, n. 4, p. 617–646, 2021. DOI: 10.1108/IJICC-04-2021-0069. Available from: https://www.emerald.com/insight/content/doi/10.1108/IJICC-04-2021-0069/full/html. Access from: 24 aug. 2025.
S14 ZAREIE, A.; SAKELLARIOU, R. Minimizing the spread of misinformation in online social networks: A survey. Journal of Network and Computer Applications, [S. l.], v. 186, p. 103094, 2021. ISSN 1084-8045. DOI: https://doi.org/10.1016/j.jnca.2021.103094. Available from: https: //www.sciencedirect.com/science/article/pii/S1084804521001168. Access from: aug. 24, 2025.
S15 ZHOU, X.; ZAFARANI, R. A Survey of Fake News: Fundamental Theories, Detection Methods, and Opportunities. ACM Comput. Surv., Association for Computing Machinery, New York, NY, USA, v. 53, n. 5, sept. 2020. ISSN 0360-0300. DOI: 10.1145/3395046. Available from: https://doi.org/10.1145/3395046. Access from: aug. 24, 2025.
Downloads
Publicado
Como Citar
Edição
Seção
Categorias
Licença
-
Autores e autoras que publicam na Tecnia concordam com os seguintes termos:
1) Autores e autoras mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores e autoras têm autorização para assumir contratos adicionais separadamente, para distribuição não exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores e autoras têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) após a finalização do processo editorial, já que isso pode aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).