Adoção da Inteligência Artificial no Schema Matching: Um Levantamento Sistemático do Estado da Arte

Autores

  • Ricardo Henricki Dias Borges
  • Valdemar Vicente Graciano Neto
  • Leonardo Andrade Ribeiro

DOI:

https://doi.org/10.56762/tecnia.v10i2.1664

Palavras-chave:

Schema Matching, Inteligência Artificial, Mapeamento Sistemático

Resumo

Com a crescente complexidade da integração de dados em razão do aumento em sua quantidade e diversidade, o Schema Matching desempenha um papel fundamental. Nesse cenário desafiador, a Inteligência Artificial (IA) surge como uma solução promissora para aprimorar a eficiência do Schema Matching. Este artigo apresenta os resultados de um mapeamento sistemático da literatura, investigando as técnicas e os algoritmos de IA mais utilizados em aplicações de Schema Matching. Os insights obtidos oferecem orientação valiosa para pesquisadores e profissionais que buscam aprimorar a integração de dados por meio do Schema Matching.

Referências

AISSAOUI, O. E.; OUGHDIR, L. A learning style-based ontology matching to enhance learning resources recommendation. In: IEEE. 2020 1st international conference on innovative research in applied science, engineering and technology (IRASET). [S. l.], p. 1-7, 2020.

AMROUCH, S.; MOSTEFAI, S.; FAHAD, M. Decision trees in automatic ontology mat- ching. International Journal of Metadata, Semantics and Ontologies, [s. l.], v. 11, n. 3, p. 180-190, 2016.

AYALA, D.; HERNÁNDEZ, I.; RUIZ, D.; RAHM, E. Leapme: Learning-based property matching with embeddings. Data & Knowledge Engineering, Amsterdã, v. 137, 2022.

BELHADI, A.; DJENOURI, Y.; SRIVASTAVA, G.; LIN, J. C.-W. Fast and accurate framework for ontology matching in web of things. ACM Transactions on Asian and Low-Resource Language Information Processing, New York, v. 22, n. 5, p. 1-19, 2023.

BENTO, A.; ZOUAQ, A.; GAGNON, M. Ontology matching using convolutional neural networks. In: SYMPOSIUM ON APPLIED COMPUTING, 35., 2020, Brno. Proceedings [...]. New York: ACM, 2020.

BERLIN, J.; MOTRO, A. Database schema matching using machine learning with feature selection. In: SPACCAPIETRA, S.; MARCH, S. T.; KAMBAYASHI, Y. (ed.). Conceptual Modeling: ER 2002. Berlin; Heidelberg: Springer, 2002.

BILKE, A.; NAUMANN, F. Schema matching using duplicates. In: INTERNATIONAL CONFERENCE ON DATA ENGINEERING, 21., 2005, Tóquio. Proceedings [...]. Washington, DC: IEEE Computer Society, 2005. p. 69-80.

BUDGEN, D.; BRERETON, P. Performing systematic literature reviews in software engineering. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 28., 2006, Xangai. Proceedings [...]. New York: ACM, 2006. p. 1051-1052.

BULYGIN, L. Combining lexical and semantic similarity measures with machine learning approach for ontology and schema matching problem. Procedia Computer Science, Amsterdã, v. 128, p. 1370-1379, 2018.

BULYGIN, L.; STUPNIKOV, S. A. Applying of machine learning techniques to combine string-based, language-based and structure-based similarity measures for ontology matching. In: IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EIConRus), 2019, São Petersburgo. Proceedings [...]. Piscataway: IEEE, 2019.

CAPPUZZO, R. Creating embeddings of heterogeneous relational datasets for data integration tasks. 2020. Dissertação (Mestrado em Engenharia da Computação) – Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Padova, Pádua, 2020.

CHAKRABORTY, J. et al. Onto-connect: Unsupervised ontology alignment with recursive neural network. In: INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, Xi’an. Proceedings [...]. New York: ACM, 2021. p. 2363-2366.

CHEN, J. et al. Augmenting ontology alignment by semantic embedding and distant supervision. In: HOSE, K. et al. (ed.). The Semantic Web – ISWC 2021. Cham: Springer, 2021. p. 124-140. (Lecture Notes in Computer Science, v. 12922).

DHOUIB, M. T.; ZUCKER, C. F.; TETTAMANZI, A. G. An ontology alignment approach combining word embedding and the radius measure. In: HITZLER, P. et al. (ed.). Knowledge Engineering and Knowledge Management. Cham: Springer, 2019. p. 115-130.

DOAN, A. et al. Magellan: toward building ecosystems of entity matching solutions. Communications of the ACM, New York, v. 63, n. 8, p. 83-91, ago. 2020.

FABBRI, S. C. P. F. et al. Externalising tacit knowledge of the systematic review process. IET Software, [s. l.], v. 7, n. 6, p. 298-307, 2013. DOI: 10.1049/iet-sen.2013.0029.

HAO, J. et al. Medto: Medical data to ontology matching using hybrid graph neural networks. In: INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, Xi’an. Proceedings [...]. New York: ACM, 2021. p. 757-770.

HÄTTASCH, B.; TRUONG-NGOC, M.; SCHMIDT, A.; BINNIG, C. It’s ai match: A two-step approach for schema matching using embeddings. 2022. arXiv:2203.04366.

HERTLING, S.; PORTISCH, J.; PAULHEIM, H. Supervised ontology and instance matching with melt. 2020. arXiv:2009.11102.

HULSEBOS, M. et al. Sherlock: A deep learning approach to semantic data type detection. In: ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 25., 2019, Anchorage. Proceedings [...]. New York: ACM, 2019. p. 1514-1524.

HYMAN, R. [Resenha de] Quasi-experimentation: Design and analysis issues for field settings. Journal of Personality Assessment, v. 46, n. 1, p. 96-97, 1982.

IYER, V.; AGARWAL, A.; KUMAR, H. Multifaceted context representation using dual attention for ontology alignment. arXiv:2010.11721, 2020.

IYER, V.; AGARWAL, A.; KUMAR, H. Multifaceted context representation using dual attention for ontology alignment.1 2020. arXiv:2010.11721. Disponível em: https://arxiv.org/abs/2010.11721. Acesso em: 15 set. 2025.

IYER, V.; AGARWAL, A.; KUMAR, H. Veealign: multifaceted context representation using dual attention for ontology alignment.2 In: THE WEB CONFERENCE, 2021, Liubliana. Companion Proceedings [...]. New York: ACM, 2021. p. 317-321.

JIANG, C.; XUE, X. Matching biomedical ontologies with long short-term memory networks. In: IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2020, Seul. Proceedings [...]. Piscataway: IEEE, 2020. p. 1845-1852.

JIMÉNEZ-RUIZ, E. et al. Breaking-down the ontology alignment task with a lexical index and neural embeddings. 2018. arXiv:1805.12402. Disponível em: https://arxiv.org/abs/1805.12402. Acesso em: 15 set. 2025.

JIMÉNEZ-RUIZ, E. et al. We divide, you conquer: from large-scale ontology alignment to manageable sub-tasks with a lexical index and neural embeddings. In: INTERNATIONAL WORKSHOP ON ONTOLOGY MATCHING, 13., 2018, Monterey. Proceedings [...]. Aachen: CEUR-WS.org, 2018. p. 13-24. (CEUR Workshop Proceedings, v. 2288).

JURISCH, M.; IGLER, B. Graph-convolution-based classification for ontology alignment change prediction. In: INTERNATIONAL WORKSHOP ON ONTOLOGY MATCHING, 14., 2019, Auckland. Proceedings [...]. Aachen: CEUR-WS.org, 2019. p. 61-72. (CEUR Workshop Proceedings, v. 2536).

KHAN, R.; GUBANOV, M. Weblens: Towards web-scale data integration, training the models. In: IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING, 36., 2020, Dallas. Proceedings [...]. Piscataway: IEEE, 2020. p. 1757-1760.

KOUTRAS, C. et al. Rema: Graph embeddings-based relational schema matching.3 In: WORKSHOPS OF THE EDBT/ICDT JOINT CONFERENCE, 2020, Copenhague. Proceedings [...]. Aachen: CEUR-WS.org, 2020. p. 219-226. (CEUR Workshop Proceedings, v. 2592).

LAADHAR, A. et al. Partitioning and local matching learning of large biomedical ontologies. In: INTERNATIONAL CONFERENCE ON EVALUATION OF NOVEL APPROACHES TO SOFTWARE ENGINEERING, 14., 2019, Heraclião. Proceedings [...]. Setúbal: SciTePress, 2019. p. 310-317.

LAADHAR, A. et al. Pomap++ results for oaei 2019: fully automated machine learning approach for ontology matching. In: INTERNATIONAL WORKSHOP ON ONTOLOGY MATCHING, 14., 2019, Auckland. Proceedings [...]. Aachen: CEUR-WS.org, 2019. p. 169-174. (CEUR Workshop Proceedings, v. 2536).

LI, G. Deepfca: Matching biomedical ontologies using formal concept analysis embedding techniques. In: IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2020, Seul. Proceedings [...]. Piscataway: IEEE, 2020. p. 1829-1836.

LI, G. Improving biomedical ontology matching using domain-specific word embeddings. In: IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2020, Seul. Proceedings [...]. Piscataway: IEEE, 2020. p. 1837-1844.

LI, W. et al. Multi-view embedding for biomedical ontology matching. In: INTERNATIONAL WORKSHOP ON ONTOLOGY MATCHING, 14., 2019, Auckland. Proceedings [...]. Aachen: CEUR-WS.org, 2019. p. 13-24. (CEUR Workshop Proceedings, v. 2536).

LI, X. et al. Heterogeneous embeddings for relational data integration tasks. In: LIN, X.; ZHANG, Y.; ZHANG, W. (ed.). Database Systems for Advanced Applications. Cham: Springer, 2021. p. 45-59. (Lecture Notes in Computer Science, v. 12681).

LI, Y.; LIU, D.-B.; ZHANG, W.-M. Schema matching using neural network. In: INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, 2005, Guangzhou. Proceedings [...]. Piscataway: IEEE, 2005. p. 4467-4472.

LIMA, B. et al. Learning reference alignments for ontology matching within and across domains. In: INTERNATIONAL WORKSHOP ON ONTOLOGY MATCHING, 15., 2020, Atenas. Proceedings [...]. Aachen: CEUR-WS.org, 2020. p. 85-96. (CEUR Workshop Proceedings, v. 2788).

LV, Z. An effective approach for large ontology matching using multi-objective grasshopper algorithm. Scientific Reports, London, v. 12, n. 1, p. 1-17, 2022.

MAJI, S.; ROUT, S. S.; CHOUDHARY, S. Dcom: A deep column mapper for semantic data type detection. 2021. arXiv:2106.12871. Disponível em: https://arxiv.org/abs/2106.12871. Acesso em: 15 set. 2025.

MOHAMED, A. et al. Schema matching based on deep learning using lstm model. In: INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY, 2., 2022, Erode. Proceedings [...]. Piscataway: IEEE, 2022. p. 1-6.

MUKHERJEE, D.; BANDYOPADHYAY, A.; CHOWDHURY, R.; BHATTACHARYA, I. Learning knowledge graph for target-driven schema matching. In: INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, Xi’an. Proceedings [...]. New York: ACM, 2021. p. 1351-1364.

MUYLAERT, R. Pandemia do novo coronavírus, Parte 6: inteligência artificial (NLP). Marco Armello, 19 ago. 2020. Disponível em: https://marcoarmello.wordpress.com/2020/08/19/coronavirus6/. Acesso em: 9 jul. 2023.

NEZHADI, A. H.; SHADGAR, B.; OSAREH, A. Ontology alignment using machine learning techniques. International Journal of Computer Science & Information Technology, Chennai, v. 3, n. 2, p. 139-149, 2011.

NIKOVSKI, D.; ESENTHER, A.; YE, X.; SHIBA, M.; TAKAYAMA, S. Bayesian networks for matcher composition in automatic schema matching. In: INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND INFORMATION RETRIEVAL, 2012, Barcelona. Proceedings [...]. Setúbal: SciTePress, 2012. p. 64-73.

NKISI-ORJI, I. et al. Ontology alignment based on word embedding and random forest classification. In: LAUX, F.; BRUNZEL, M. (ed.). Declarative AI: Theory, Systems, and Applications. Cham: Springer, 2019. p. 147-163. (Lecture Notes in Computer Science, v. 11867).

NOZAKI, K.; HOCHIN, T.; NOMIYA, H. Semantic schema matching for string attribute with word vectors. In: INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN), 2019, Kuala Lumpur. Proceedings [...]. Piscataway: IEEE, 2019. p. 488-493.

PAN, Z.; PAN, G.; MONTI, A. Semantic-similarity-based schema matching for management of building energy data. Energies, Basel, v. 15, n. 23, p. 8894, 2022.

PETERSEN, K.; VAKKALANKA, S.; KUZNIARZ, L. Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology, [s. l.], v. 64, p. 1-18, ago. 2015.

PRZYBOROWSKI, M.; PABIŚ, M.; JANUSZ, A.; ŚLĘZAK, D. Schema matching using gaussian mixture models with wasserstein distance. 2021. arXiv:2111.14244. Disponível em: https://arxiv.org/abs/2111.14244. Acesso em: 15 set. 2025.

RAHM, E.; BERNSTEIN, P. A. A survey of approaches to automatic schema matching. The VLDB Journal, [s. l.], v. 10, n. 4, p. 334-350, dez. 2001.

RANGEL, C. et al. An approach for the emerging ontology alignment based on the bees colonies. In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE (ICCI), 12., 2015, Madri. Proceedings [...]. Atlantis Press, 2015. p. 248-254.

RODRIGUES, D.; SILVA, A. A study on machine learning techniques for the schema matching network problem. Journal of the Brazilian Computer Society, Porto Alegre, v. 27, n. 1, p. 1-32, dez. 2021.

RODRIGUES, D.; SILVA, A. da; RODRIGUES, R.; SANTOS, E. dos. Using active learning techniques for improving database schema matching methods. In: IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, 28., 2015, São Carlos. Proceedings [...]. Piscataway: IEEE, 2015. p. 104-109.

SCHMIDTS, O.; KRAFT, B.; SIEBIGTEROTH, I.; ZÜNDORF, A. Schema matching with frequent changes on semi-structured input files: A machine learning approach on biological product data. In: INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, 21., 2019, Heraclião. Proceedings [...]. Setúbal: SciTePress, 2019. v. 1, p. 208-215.

SHRAGA, R.; GAL, A. Humanal: Calibrating human matching beyond a single task. In: ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2022, Filadélfia. Proceedings [...]. New York: ACM, 2022. p. 1827-1840.

SHRAGA, R.; GAL, A. Powarematch: A quality-aware deep learning approach to improve human schema matching. ACM Journal of Data and Information Quality, New York, v. 14, n. 3, p. 1-27, set. 2022.

SHRAGA, R.; GAL, A.; ROITMAN, H. Adnev: Cross-domain schema matching using deep similarity matrix adjustment and evaluation. Proceedings of the VLDB Endowment, [s. l.], v. 13, n. 9, p. 1401-1415, 2020.

SRINIVAS, K.; GALE, A.; DOLBY, J. Merging datasets through deep learning. 2018. arXiv:1809.01604. Disponível em: https://arxiv.org/abs/1809.01604. Acesso em: 15 set. 2025.

SUN, C.; SHEN, D. Towards deep entity resolution via soft schema matching. Neurocomputing, v. 471, p. 107-117, fev. 2022.

SUN, J.; TAKEUCHI, S.; YAMASAKI, I. Few-shot ontology alignment model with attribute attentions. In: IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020, Glasgow. Proceedings [...]. Piscataway: IEEE, 2020. p. 1-8.

TESLYA, N.; SAVOSIN, S. Matching ontologies with word2vec-based neural network. In: ABRAHÃO, S.; ZELENKOV, Y. (ed.). Software and Compilers for Embedded Systems. Cham: Springer, 2019. p. 115-125. (Lecture Notes in Computer Science, v. 11789).

WANG, P.; ZOU, S.; LIU, J.; KE, W. Matching biomedical ontologies with gcn-based feature propagation. Mathematical Biosciences and Engineering, Springfield, v. 19, n. 8, p. 8479-8504, 2022.

WOHLIN, C. et al. Experimentation in software engineering. Berlin: Springer Science & Business Media, 2012.

XUE, X.; CHEN, D.; LIU, W. Naive bayesian classifier based semi-supervised learning for matching ontologies. In: IEEE INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 24., 2021, Dalian. Proceedings [...]. Piscataway: IEEE, 2021. p. 1305-1310.

XUE, X.; CHEN, J.; REN, A. Interactive ontology matching based on evolutionary algorithm. In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 15., 2019, Macau. Proceedings [...]. Piscataway: IEEE, 2019. p. 1-5.

XUE, X. et al. Artificial neural network based sensor ontology matching technique. In: IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS), 2021, Chongqing. Proceedings [...]. Piscataway: IEEE, 2021. p. 1-6.

XUE, X. et al. Matching sensor ontologies through siamese neural networks without using reference alignment. PeerJ Computer Science, San Diego, v. 7, e602, 2021.

YORSH, U.; BEHR, A. S.; KOCKMANN, N.; HOLEŇA, M. Text-to-ontology mapping via natural language processing models. 2022. arXiv:2209.04944. Disponível em: https://arxiv.org/abs/2209.04944. Acesso em: 15 set. 2025.

ZHANG, J.; SHIN, B.; CHOI, J. D.; HO, J. C. Smat: An attention-based deep learning solution to the automation of schema matching. In: INTERNATIONAL CONFERENCE ON ASIAN DIGITAL LIBRARIES, 23., 2021, Virtual Event. Proceedings [...]. Cham: Springer, 2021. p. 3-17. (Lecture Notes in Computer Science, v. 13127).

ZHANG, Y. et al. Ontology matching with word embeddings. In: INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, Pequim. Proceedings [...]. Beijing: AAAI Press, 2014. p. 1-6.

Downloads

Publicado

25.09.2025

Como Citar

Ricardo Borges, Vicente Graciano Neto, V., & Andrade Ribeiro, L. (2025). Adoção da Inteligência Artificial no Schema Matching: Um Levantamento Sistemático do Estado da Arte. Revista Tecnia, 10(2), 21. https://doi.org/10.56762/tecnia.v10i2.1664

Edição

Seção

Dossiê Temático - Tecnologias Habilitadoras para a Indústria 4.0

Categorias